Clinical Resources
Standards and Bibliography for the Clinical Use of Capnography
Table of Contents

Emergency Department
- Standards 3
- Bibliography 5

Procedural Sedation
- Standards 7
- Bibliography 9

Step Down
- Standards 11
- Bibliography 13

Science and Technology
- Bibliography 15
ACEP (American College of Emergency Physicians)

2009

ACEP Policy Statement Revised and approved by the ACEP Board of Directors April 2009.

ETT Placement

End-tidal carbon dioxide detection is the most accurate technology to evaluate endotracheal tube position in patients who have adequate tissue perfusion. Properly placed endotracheal tubes may become displaced due to movement of patients and/or equipment. Continuous assessment of correct endotracheal tube placement with continuous end-tidal carbon dioxide monitoring is ideal.

2005

Sedation in the Emergency Department

Capnometry is a technique used to monitor etCO$_2$ and, therefore, may detect early cases of inadequate ventilation before oxygen desaturation takes place. An increase in etCO$_2$ might be the only clue to hypoventilation and potential respiratory compromise. The authors conclude that in the presence of etCO$_2$ monitoring, these identifiers may allow more rapid identification of hypoventilation than pulse oximetry alone. In the study, pulse oximetry would have identified only 11 of the 33 patients meeting the predetermined definitions for respiratory depression of an oxygen saturation less than 90%, etCO$_2$ of greater than 50 mm Hg, or an absent waveform. Interventions and practices considered: Pulse oximetry and capnometry if indicated. How should respiratory status be assessed? Consider capnometry to provide additional information regarding early identification of hypoventilation.

Standard physical examination methods, such as auscultation of lungs and epigastrium, visualization of chest movement and fogging in the tube, are not sufficiently reliable to exclude esophageal intubation in all situations. End-tidal CO$_2$ detection, either qualitative, quantitative or continuous, is the most accurate and easily available method to monitor correct endotracheal tube position in patients who have adequate tissue perfusion. Pulse oximetry and esophageal detector devices are not as reliable as end-tidal CO$_2$ determinations in patients who have adequate tissue perfusion.

Michael L. Carius, President of ACEP. “This new policy supports the use of carbon dioxide monitoring as the most effective method of confirming that patients have been intubated correctly.”

Consider capnometry to provide additional information regarding early identification of hypoventilation.

2001

Among prehospital providers, reports of missed intubations range between 0-5%, although a recent study demonstrated a substantially higher rate (25%) of misplaced endotracheal tubes when patients intubated in the field were re-evaluated upon presentation to the emergency department.

Pulse oximetry alone is inadequate because desaturation as a marker for a misplaced endotracheal tube can be a late finding depending on the amount of pre-oxygenation the patient has undergone.
ACEP (American College of Emergency Physicians) cont.

End-tidal CO₂ detection approaches 100% sensitivity and specificity in the patient with spontaneous circulation. Several professional organizations including the American Society of Anesthesiologists, the National Association of EMS Physicians, and the American Heart Association recommend utilizing secondary tube confirmation techniques such as end-tidal CO₂ measurements.

AHA (American Heart Association)

2005

Although end-tidal CO₂ serves as an indicator of cardiac output produced by chest compressions and may indicate return of spontaneous circulation (ROSC), there is little other technology available to provide real-time feedback on the effectiveness of CPR. End-tidal CO₂ monitoring is a safe and effective noninvasive indicator of cardiac output during CPR and may be an early indicator of ROSC in intubated patients. End-tidal CO₂ monitoring during cardiac arrest can be useful as a noninvasive indicator of cardiac output generated during CPR (Class IIa). In the patient with ROSC, continuous or intermittent monitoring of end-tidal CO₂ provides assurance that the endotracheal tube is maintained in the trachea. End-tidal CO₂ can guide ventilation, especially when correlated with the PaCO₂ from an arterial blood gas measurement.

2005

To reduce the risk of unrecognized tube misplacement or displacement, providers should use a device such as an exhaled CO₂ detector or an esophageal detector device to confirm endotracheal tube placement in the field, in the transport vehicle, on arrival at the hospital, and after any subsequent movement of the patient.

2000

Emergency responders must confirm tracheal tube position by using nonphysical examination techniques.

ENA (Emergency Nurses Association)

2009

Emergency Nursing Resource: The Use of Capnography During Procedural Sedation/Analgesia in the Emergency Department

Conclusions and recommendations about the use of capnography for procedural sedation and analgesia (PSA) in adults and children in the emergency department:

· Capnography is a useful technique for detecting respiratory depression during and after PSA.

· EtCO₂ is a more sensitive indicator of respiratory depression than SpO₂ or clinician assessment during PSA as well as in the recovery phase…

· Capnography is a useful adjunct for monitoring patients during PSA in the emergency department (Level B).

2005

Patients undergoing sedation and analgesia require frequent assessments of their vital signs such as heart rate, blood pressure, respiratory rate, and pulse oximetry; cardiopulmonary status including cardiac monitoring, breath sounds, skin color, oxygen saturation, and exhaled carbon dioxide.
The measurement of exhaled carbon dioxide is the best signal of return of spontaneous circulation during CPR. Capnography is also a useful noninvasive index of the adequacy of pulmonary perfusion during closed-chest cardiac compression. Moreover, the quantitative measurement of end-tidal PCO₂ may have predictive value during CPR.

Bibliography

General

- **Effect of mask type, oxygen concentration, and flow rate on both exhaled CO₂ and respiratory frequency measurement by capnograph.** Nuccio PF, Spada CT, Weinhouse GL, Niebel KH, Waugh JB. Respiratory Care. November 2008; Vol. 53(11), 1578.

Shortness of Breath

Airway Obstruction

Cardiopulmonary Failure and Arrest

- **Predicting the need for hospitalization in acute childhood asthma using end-tidal capnography.** Kunkov S, Pinedo V, Silver EJ, Crain EF. Pediatric Emergency Care. September 2005; Vol. 21, No. 9, 574-577.

Diabetes

Intubation

Sedation

ASA (American Society of Anesthesiologists)

2009
Both the consultants and the ASA members disagree that pulse oximetry monitoring is more likely to detect respiratory depression than are clinical signs.

The consultants and ASA members both agree that end-tidal carbon dioxide monitoring is more likely to detect hypercapnia/hypercarbia and respiratory depression than are clinical signs.

Detection of Respiratory Depression
All patients receiving neuraxial opioids should be monitored for adequacy of ventilation (e.g., respiratory rate, depth of respiration [assessed without disturbing a sleeping patient]), oxygenation (e.g., pulse oximetry when appropriate), and level of consciousness.

2005
Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea (OSA)
These guidelines focus on the perioperative management of patients with OSA who may be at risk for perioperative morbidity and mortality because of potential difficulty in maintaining a patent airway. For patients at increase perioperative risk from OSA, the following is recommended...

III. Intraoperative Management...The consultants agree that respiratory CO\textsubscript{2} monitoring should be used during moderate or deep sedation in these patients...

Recommendations
If moderate sedation is used, ventilation should be continuously monitored by capnography or another automated method if feasible because of the increased risk of undetected airway obstruction in these patients.

IV. Postoperative Management...Postoperative concerns in the management of patients with OSA include...the exacerbation of respiratory depression may occur on the third or fourth postoperative day as sleep patterns are reestablished and "REM rebound" occurs.

2004
Statement on the Safe Use of Propofol approved by the ASA House of Delegates, October 2, 2004
“During the administration of propofol, patients should be monitored without interruption to assess levels of consciousness, and to identify early signs of hypotension, bradycardia, apnea, airway obstruction and/or oxygen desaturation. Ventilation, oxygen saturation, heart rate and blood pressure should be monitored at regular and frequent intervals. Monitoring for the presence of exhaled carbon dioxide should be utilized when possible, since movement of the chest will not dependably identify airway obstruction or apnea.”

2002
Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists “In circumstances where patients are physically separated from the care giver, the Task Force believes that automated apnea monitoring (by detection of exhaled CO\textsubscript{2} or other means) may decrease risks during both moderate and deep sedation...”“Monitoring of exhaled CO\textsubscript{2} should be considered for all patients receiving deep sedation and for patients whose ventilation cannot be directly observed during moderate sedation.”
Procedural Sedation

Joint Statement: The American Association for the Study of Liver Diseases, American College of Gastroenterology, American Gastroenterological Association, and American Society for Gastrointestinal Endoscopy

2009

GASTROENTEROLOGY December, 2009;137:2161–2167.

The use of nonanesthesiologist-administered propofol (NAAP) for GI endoscopy

Capnography is recommended when it is difficult to visually assess respiration or during prolonged procedures such as ERCP and EUS. In these clinical settings, capnography has been shown to significantly reduce the incidence of hypoxemia and apnea. Capnography reduces the occurrence of apnea and hypoxemia during ERCP/EUS (grade 2B) and upper endoscopy/colonoscopy (grade 2C).

ASGE (American Society for Gastrointestinal Endoscopy)

2008

Guideline; Sedation and anesthesia in GI endoscopy GASTROINTESTINAL ENDOSCOPY, Volume 68, No. 5 : 2008; 815-826.

Recommendations for propofol use during endoscopy

Monitoring oxygenation by pulse oximetry is not a substitute for monitoring ventilatory function. Capnography should be considered because it may decrease the risks during deep sedation. Continuous monitoring will allow recognition of patients who have progressed to a deeper level of sedation.

Respiratory Depression

Given that hypoxemia resulting from depressed respiratory activity is a principal risk factor for adverse respiratory events during sedation, integrating capnography into patient monitoring protocols may improve safety.

It more readily detects hypoventilation compared with pulse oximetry or visual observation and thereby provides an opportunity for early recognition of depressed respiratory activity. Data are available, however, to support its use during ERCP and EUS. A recent randomized controlled trial using the combination of an opioid and benzodiazepine for elective ERCP and EUS found significantly less hypoxemia in the subjects who received sedation with capnography compared with standard monitoring.

2003

Capnography more readily identifies patients with apneic episodes and when used to guide sedation results in less CO₂ retention. Capnography is a superior way to evaluate ventilation, compared with pulse oximetry measurement, which assesses oxygenation.

CSA (California Society of Anesthesiologists)

2008

Adequacy of ventilation

Non-Anesthesiologists Sedation Practitioners, Supervised Sedation Professionals, Education and Training

Monitoring and recognizing abnormalities of physiologic variables, including the following: Capnographic monitoring. The health professional should be familiar with the use and interpretation of capnographic waveforms to determine the adequacy of ventilation during deep sedation.
Joint Commission

2008

Joint Commission Accreditation Program: Hospital Chapter: Provision of Care, Treatment, and Services, 2008; Standard PC.03.01.01

Elements of Performance for PC.03.01.01

1. Individuals administering moderate or deep sedation and anesthesia are qualified and have credentials to manage and rescue patients at whatever level of sedation or anesthesia is achieved, either intentionally or unintentionally.

2006

Provision of Care, Treatment, and Services
The Administration of Moderate or Deep Sedation or Anesthesia

The standards for sedation and anesthesia care apply when patients in any setting receive, for any purpose, by any route, the following:

· General, spinal, or other major regional anesthesia

Or

· Moderate or deep sedation (with or without analgesia) that, in the manner used, may be reasonably expected to result in the loss of protective reflexes

These protocols are consistent with professional standards and address at least the following:

Appropriate monitoring of vital signs, including, but not limited to, heart rates and oxygenation, using pulse oximetry equipment, respiratory frequency and adequacy of pulmonary ventilation.

Standard PC.13.30-.40

Patients are monitored during and immediately after the procedure and/or administration of moderate or deep sedation or anesthesia

Elements of Performance

· Appropriate methods are used to continuously monitor oxygenation, ventilation, and circulation during procedures that may affect the patient’s physiological status.

· Each patient’s physiological status, mental status, and pain level are monitored. Monitoring is at a level consistent with the potential effect of the procedure and/or sedation or anesthesia.

Bibliography

Procedural Sedation

10.0 RESOURCES

10.1.2.5 Capnograph

The bronchoscopy assistant must be trained in monitoring and evaluating the patient’s clinical condition as reflected by pulse oximetry, capnography, electrocardiogram, and stability of or changes in mechanical ventilation parameters, and be capable of relating changes in clinical condition to disease state, procedure, or drugs administered for the procedure.

11.0 MONITORING

Patient monitoring should be done before, at regular intervals during, and after bronchoscopy until the patient meets appropriate discharge criteria. For no or minimal sedation, less monitoring is necessary. For moderate and deep sedation, more monitoring should be done. The following should be monitored before, during, and/or after bronchoscopy, continuously, until the patient returns to his pre-sedation level of consciousness.

11.1.5 SpO₂, FIO₂ and ETCO₂

Capnography should not be mandated for all patients receiving mechanical support, but it may be indicated for: Evaluation of the exhaled [CO₂], especially end-tidal CO₂; Monitoring severity of pulmonary disease and evaluating response to therapy; as an adjunct to determine that tracheal rather than esophageal intubation has taken place; continued monitoring of the integrity of the ventilatory circuit; evaluation of the efficiency of mechanical ventilatory support; monitoring adequacy of pulmonary, systemic, and coronary blood flow; monitoring inspired CO₂ when CO₂ is being therapeutically administered; graphic evaluation of the ventilatory-patient interface; measurement of the volume of CO₂ elimination to assess metabolic rate and/or alveolar ventilation.

Hazards and Complications: Warns against the addition of excessive weight on the endotracheal tube.

Joint Commission

Goal 16

Improve recognition and response to changes in a patient’s condition.

NPSG.16.01.01

The [organization] selects a suitable method that enables health care staff members to directly request additional assistance from a specially trained individual(s) when the [patient]’s condition appears to be worsening. A significant number of critical inpatient events are preceded by warning signs prior to the event. A majority of [patient]s who have cardiopulmonary or respiratory arrest demonstrate clinical deterioration in advance. Early response to changes in a [patient]’s condition by a specially trained individual(s) may reduce cardiopulmonary arrests and [patient] mortality.
AAP (American Academy of Pediatrics)

2006

Health care providers should confirm endotracheal tube placement immediately after intubation, during transport and whenever the patient is moved. Exhaled CO$_2$ should be monitored in patients with an endotracheal tube both in the pre-hospital and hospital settings, as well as during all transport, by using a colorimetric detector or capnography.

2004

Guidelines and Levels of Care for Pediatric Intensive Care Units

Respiratory Equipment

Mechanical ventilators suitable for pediatric patients of all sizes must be available for each level I and level II PICU bed. Equipment for chest physiotherapy and suctioning, spirometers, and oxygen analyzers must always be available for every patient. Oxygen monitors (pulse oximeters and transcutaneous oxygen monitors) and CO$_2$ monitors (transcutaneous and end-tidal) are required; portable (transport) ventilators are desired.

AHA (American Heart Association)

2005

American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care (ECC) of Pediatric and Neonatal Patients: Neonatal Resuscitation Guidelines

Endotracheal tube placement must be assessed visually during intubation and by confirmatory methods after intubation if the heart rate remains low and is not rising. Except for intubation to remove meconium, exhaled CO$_2$ detection is the recommended method of confirmation (Class IIa).

SCCM (The Society of Critical Care Medicine)

2004

American College of Critical Care Medicine of the Society of Critical Care Medicine Guidelines and Levels of Care for Pediatric Intensive Care Units Guidelines and Levels of Care for Pediatric Intensive Care Units – 11/04/2004

Respiratory Equipment: Mechanical ventilators suitable for pediatric patients of all sizes must be available for each level I and level II PICU bed. Equipment for chest physiotherapy and suctioning, spirometers, and oxygen analyzers must always be available for every patient. Oxygen monitors (pulse oximeters and transcutaneous oxygen monitors) and CO$_2$ monitors (transcutaneous and end-tidal) are required.

Bedside monitors: Bedside monitors in all PICUs must have the capability for continuously monitoring heart rate and rhythm, respiratory rate, temperature, I hemodynamic pressure, oxygen saturation, end -tidal CO$_2$, and arrhythmia detection.
The measurement of exhaled carbon dioxide is the best signal of return of spontaneous circulation during CPR. Capnography is also a useful noninvasive index of the adequacy of pulmonary perfusion during closed-chest cardiac compression. Moreover, the quantitative measurement of end-tidal PCO_2 may have predictive value during CPR.

Level I ICU: Services provided in unit: An ICU has the capability of providing monitoring and support of the critically ill patient. To do so, the ICU is prepared to provide the following: Capnography.

Pennsylvania Patient Safety Authority

Patients with known or suspected OSA are at increased risk for life-threatening cardiopulmonary complications. The inherent problem of airway management during administration of general anesthesia and the large patient population with undiagnosed OSA increases the risk of developing complications postoperatively. OSA patients are susceptible to the respiratory depressant effects of sedatives, opioids, and inhaled anesthetics. Guidelines to consider when administering medications include: avoiding the use of sedatives and opioids, reducing doses and titrating slowly when administering sedatives and opioids, and administering local anesthesia whenever possible. Postoperative care is the pivotal time to implement interventions to reduce complications, especially within the first 24 hours. Postoperative risk reduction strategies focus on monitoring patients for an obstructed airway so that early detection may lead to prompt treatment.

Bibliography

Pediatrics

Smart Alarm Respiratory Analysis (SARA) used in capnography to reduce alarms during spontaneous breathing. Colman J, Cohen J, Lain D. Society for Technology in Anesthesia. 2008.

Comparison of capnography derived respiratory rate alarm frequency using the SARA algorithm versus an established non-adaptive respiratory rate alarm management algorithm in bariatric surgical patients. Hockman S, Glembot T, Niebel K. American Association for Respiratory Care (AARC), December 2009.

General

Comparison of capnography derived respiratory rate alarm frequency using the SARA algorithm versus an established non-adaptive respiratory rate alarm management algorithm in bariatric surgical patients. Hockman S, Glembot T, Niebel K. American Association for Respiratory Care (AARC), December 2009.

The most important vital signs are not being measured. Ahrens T. Australian Critical Care. February 2008; Vol. 21, Issue 1, 3-5.

